107 research outputs found

    Circular Food Behaviors : A Literature Review

    Get PDF
    Consumer behavior is crucial in the transition towards circular food systems. Studies so far investigate isolated circular food behaviors, but it is still unclear how the literature comprehensively addresses these behaviors. This paper provides an overview of the literature on circular food behaviors. Following a semi-systematic literature review, we analyze 46 papers related to circular food behaviors. We summarize their main features, categorize the behaviors, and propose a future research agenda. Results show the novelty and quick popularity of the topic, a dispersion across sustainability and agri-food journals, the manuscripts’ goals related to consumption, a predominance of empirical data collection in Europe, a focus on behaviors related to protein alternatives, food waste, and upcycled foods, and the importance of communication and consumers’ education. We categorize and characterize three types of circular food behaviors: linear, transitioning, and circular behaviors. Circular behaviors (i) are part of a systemic circular economy view, (ii) define consumers as “doers” or “prosumers”, (iii) pursue long-term sustainability goals, (iv) show a high engagement of skilled consumers, and (v) are supported by technologies. Future research should consider the social dimension of sustainability and pursue a systemic view of circular food behaviors. We suggest that a circular food-related lifestyle may incorporate the recommended directions.© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Alpha-band rhythms in visual task performance: phase-locking by rhythmic sensory stimulation

    Get PDF
    Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour, such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality. These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may be closely linked to brain oscillations. We here investigated this link for a prominent rhythm of the visual system (the alpha-rhythm, 8-12 Hz) by applying rhythmic visual stimulation at alpha-frequency (10.6 Hz), known to lead to a resonance response in visual areas, and testing its effects on subsequent visual target discrimination. Our data show that rhythmic visual stimulation at 10.6 Hz: 1) has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz, 7.1 Hz, 14.2 Hz), and 2) leads to alpha-band oscillations in visual performance measures, that 3) correlate in precise frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious explanation for these three findings is entrainment (phase-locking) of ongoing perceptually relevant alpha-band brain oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal influences of these rhythms on task performance to study their functional roles

    Optimal perceived timing: integrating sensory information with dynamically updated expectations

    Get PDF
    The environment has a temporal structure, and knowing when a stimulus will appear translates into increased perceptual performance. Here we investigated how the human brain exploits temporal regularity in stimulus sequences for perception. We find that the timing of stimuli that occasionally deviate from a regularly paced sequence is perceptually distorted. Stimuli presented earlier than expected are perceptually delayed, whereas stimuli presented on time and later than expected are perceptually accelerated. This result suggests that the brain regularizes slightly deviant stimuli with an asymmetry that leads to the perceptual acceleration of expected stimuli. We present a Bayesian model for the combination of dynamically-updated expectations, in the form of a priori probability of encountering future stimuli, with incoming sensory information. The asymmetries in the results are accounted for by the asymmetries in the distributions involved in the computational process

    Covert Tracking: A Combined ERP and Fixational Eye Movement Study

    Get PDF
    Attention can be directed to particular spatial locations, or to objects that appear at anticipated points in time. While most work has focused on spatial or temporal attention in isolation, we investigated covert tracking of smoothly moving objects, which requires continuous coordination of both. We tested two propositions about the neural and cognitive basis of this operation: first that covert tracking is a right hemisphere function, and second that pre-motor components of the oculomotor system are responsible for driving covert spatial attention during tracking. We simultaneously recorded event related potentials (ERPs) and eye position while participants covertly tracked dots that moved leftward or rightward at 12 or 20°/s. ERPs were sensitive to the direction of target motion. Topographic development in the leftward motion was a mirror image of the rightward motion, suggesting that both hemispheres contribute equally to covert tracking. Small shifts in eye position were also lateralized according to the direction of target motion, implying covert activation of the oculomotor system. The data addresses two outstanding questions about the nature of visuospatial tracking. First, covert tracking is reliant upon a symmetrical frontoparietal attentional system, rather than being right lateralized. Second, this same system controls both pursuit eye movements and covert tracking

    Temporal Dynamics of Visual Attention Allocation

    Get PDF
    We often temporally prepare our attention for an upcoming event such as a starter pistol. In such cases, our attention should be properly allocated around the expected moment of the event to process relevant sensory input efficiently. In this study, we examined the dynamic changes of attention levels near the expected moment by measuring contrast sensitivity to a target that was temporally cued by a five-second countdown. We found that the overall attention level decreased rapidly after the expected moment, while it stayed relatively constant before it. Results were not consistent with the predictions of existing explanations of temporal attention such as the hazard rate or the stimulus-driven oscillations. A control experiment ruled out the possibility that the observed pattern was due to biased time perception. In a further experiment with a wider range of cue-stimulus-intervals, we observed that attention level increased until the last 500 ms of the interval range, and thereafter, started to decrease. Based on the performances of a generative computational model, we suggest that our results reflect the nature of temporal attention that takes into account the subjectively estimated hazard rate and the probability of relevant events occurring in the near future

    Implicit Temporal Expectation Attenuates Auditory Attentional Blink

    Get PDF
    Attentional blink (AB) describes a phenomenon whereby correct identification of a first target impairs the processing of a second target (i.e., probe) nearby in time. Evidence suggests that explicit attention orienting in the time domain can attenuate the AB. Here, we used scalp-recorded, event-related potentials to examine whether auditory AB is also sensitive to implicit temporal attention orienting. Expectations were set up implicitly by varying the probability (i.e., 80% or 20%) that the probe would occur at the +2 or +8 position following target presentation. Participants showed a significant AB, which was reduced with the increased probe probability at the +2 position. The probe probability effect was paralleled by an increase in P3b amplitude elicited by the probe. The results suggest that implicit temporal attention orienting can facilitate short-term consolidation of the probe and attenuate auditory AB

    Temporal regularity of the environment drives time perception

    Get PDF
    It’s reasonable to assume that a regularly paced sequence should be perceived as regular, but here we show that perceived regularity depends on the context in which the sequence is embedded. We presented one group of participants with perceptually regularly paced sequences, and another group of participants with mostly irregularly paced sequences (75% irregular, 25% regular). The timing of the final stimulus in each sequence could be varied. In one experiment, we asked whether the last stimulus was regular or not. We found that participants exposed to an irregular environment frequently reported perfectly regularly paced stimuli to be irregular. In a second experiment, we asked participants to judge whether the final stimulus was presented before or after a flash. In this way, we were able to determine distortions in temporal perception as changes in the timing necessary for the sound and the flash to be perceived synchronous. We found that within a regular context, the perceived timing of deviant last stimuli changed so that the relative anisochrony appeared to be perceptually decreased. In the irregular context, the perceived timing of irregular stimuli following a regular sequence was not affected. These observations suggest that humans use temporal expectations to evaluate the regularity of sequences and that expectations are combined with sensory stimuli to adapt perceived timing to follow the statistics of the environment. Expectations can be seen as a-priori probabilities on which perceived timing of stimuli depend

    Temporal orienting in the human brain: neural mechanisms of control and modulation

    No full text
    The main aim of the experiments reported in this thesis was to explore the neural mechanisms underlying the temporal orienting of attention. In Chapter 3, I explored the possible dissociation between exogenous and endogenous temporal orienting by comparing reaction times to targets appearing after rhythmic or symbolic cues. Behavioural results provided evidence for the existence of dissociable exogenous and endogenous types of temporal orienting of attention. The experiment in Chapter 4 combined spatiotemporal expectations using rhythmic moving cues to test the modulatory effect of exogenous temporal orienting in the brain. Specifically, I used EEG to test the effect of temporal orienting on perceptual and motor stages of target analysis, as well as on anticipatory oscillatory brain activity. The time-frequency analysis revealed that rhythmic cues can entrain slow brains oscillations, providing a putative mechanism for enhancing the perceptual processing of expected events. Spatiotemporal expectations also modulated the amplitude of visual responses and the timing and amount of preparatory motor activity. In Chapter 5, I used a novel task to explore the neural modulatory effects of spatial and temporal expectations acting in isolation or in coordination. For the first time, the analysis of early visual responses demonstrated that temporal expectations alone, independently of spatial orienting, can enhance early visual perceptual processes. The time-frequency analysis in this experiment showed a desynchronisation of alpha oscillations focused over central-parietal electrodes induced by rhythmic cues that were independent of spatial expectations. When rhythmic cues carried spatiotemporal information, the alpha desynchronisation also spread over contralateral occipital electrodes. In Chapter 6, fMRI was used to test the possible neural dissociation between motor and temporal orienting. The results confirmed the large overlap between these two processes, but also indicated independent behavioural and neural effects of temporal orienting. Temporal orienting activated the left IPS across motor conditions, further implicating the left IPS in temporal orienting. Based on the results of these experiments, directions for future studies are discussed
    corecore